

Presented by: Arlene C. Seña, MD, MPH Associate Professor of Medicine Division of Infectious Diseases, University of North Carolina at Chapel Hill; Medical and Laboratory Director, Durham County Department of Public Health

History of M. genitalium

- Smallest genome of any free-living organism (~480 genes), no cell wall.¹
- Very similar to other Mycoplasma spp. (*M. pneumoniae, Ureaplasma urealyticum*).¹
- Immunodominant adhesion protein is MgPa, contributes to pathogenesis.
- Lives on and in the epithelial cells of the urinary and genital tracts.¹
- First identified in 2 male cases of non-gonococcal urethritis in 1981.¹

Lind, Lancet 1982

2. Taylor-Robinson and Jensen. *Clin Microbiol Rev* 2011; 24:498-514.

^{1.} Tully, et al. *Lancet*. 1981;1(8233):1288-91.

M. genitalium as an Sexually Transmitted Infection (STI)

cervicitis and PID. "

Population Prevalence

M. genitalium infection is more common than *Neisseria gonorrhoeae*, and has similar prevalence as *Chlamydia trachomatis* in most settings.¹

1. CDC. 2015 Sexually Transmitted Diseases and Treatment Guidelines: Mycoplasma genitalium. http://www.cdc.gov/std/tg2015/emerging.htm. Accessed January 30, 2019.

- 2. Anagrius C, et al. PLOS One. 2013 Apr 8;8(4):e61481.
- 3. Hilton J, et al. Sex Health. 2010;7(1):77-81.
- 4. Wikstrøm, et al. Sex Transm Infect. 2006; 82:276-279.
- 5. McGowin CL, et al. PLoS Pathog. 2011;7(5):e1001324.
- 6. Wroblewski, et al. J Clin Microbiol. 2006; 44:3306-12. doi:10.1128/JCM.00553-06.

Clinic Prevalence in the United States

 Symptomatic & asymptomatic individuals from family medicine, OBGYN, family planning, public health and STD clinics (n=7 sites)

Getman et. al. J Clin Micro 2016; 54(9):2278-83

[†] Female specimens from > 50 healthcare locations; male specimens from STI clinic

Napierala et. al. *Diag Micro Inf Dis* 2015; 82 (2015) 194–198 Munson et al. *J Clin Micro* 2016; 54(2):432-8

Clinical Presentations

Frequently asymptomatic.1

Detected in **10-30%** of women with clinical cervicitis.¹

Identified in up to **22%** of pelvic inflammatory disease (PID) cases.¹

Untreated PID can lead to adverse pregnancy outcomes.¹

More likely to exhibit symptoms of an *M. genitalium* infection.¹

Responsible for **30%** of persistent or recurrent urethritis in men.²

> Taylor-Robinson D, et al. *Clin Microbiol Rev.* 2011;24(3):498-514.
> CDC. 2015 STD Treatment Guidelines: *Mycoplasma genitalium*. http://www.cdc.gov/std/tg2015/emergi ng.htm. Accessed January 30, 2019.
> Lis R, et al. *Clin Infect Dis*. 2015;61(3):418-26.
> Vandepitte J, et al. *Sex Transm Infect.* 2014;90(7):545-9.

May also increase the risk of HIV acquisition and transmission.^{2,3}

When patients do experience symptoms, they are similar to those associated with other urogenital tract bacterial infections.⁴

STI Syndromes in Women

STI Syndromes in Men

Complications from M. genitalium Infections

- Strongly associated with reproductive sequelae in women similar to chlamydia^{1,2}
 - Pelvic inflammatory disease (PID), infertility, preterm birth, spontaneous abortion³
- Associated with chronic urethritis, balanoposthitis in men; possibly prostatitis, epididymitis¹
- Over 2-fold increased risk for HIV-1 acquisition⁴
- 1. Taylor-Robinson D et al. Clin Microbiol Rev 2011; 24:498-514.
- 2. CDC. 2015 Sexually Transmitted Diseases and Treatment Guidelines: *Mycoplasma genitalium*. http://www.cdc.gov/std/tg2015/emerging.htm.
- 3. Lis et al. Clin Infect Dis 2015 Aug 1; 61:418-426.
- 4. Mavedzenge SN et al. AIDS 2012 Mar 13; 26(5): 617-24.

M. genitalium Association with PID

First	Year				%	
Author	Published			OR (95% CI)	Weight	
Lind	1987 —	*		0.23 (.01, 4.70)	2.39	
Cohen	2002			10.29 (1.26, 84.10)	4.47	
Simms	2003	13 -		12.34 (.67, 226.77)	2.54	
Jurstrand*	2007	-	.	1.00 (.60, 1.70)	19.92	
Haggerty*	2008			2.00 (1.00, 4.20)	16.55	
Bjartling*	2010			6.29 (1.56, 25.20)	8.34	
Oakeshott	2010)		2.40 (.72, 7.98)	10.08	
Bjartling*	2012			9.00 (1.62, 49.89)	6.18	
Taylor-Robinson	2012			2.13 (.49, 9.30)	7.71	
Vandepitte	2012		+ • · ·	1.43 (.95, 2.15)	21.80	
Overall (12 = 51.3%	%, <i>P</i> = .030)		\diamond	2.14 (1.31, 3.49)	100.00	
NOTE: Weights are	e from random-effects analysis					Lis et al. <i>Clin Infect</i> <i>Di</i> s 2015 Aug 1; 61:418-426.
		.1 .2 .5	1 2 5 10			

M. genitalium Association with Infertility

First	Year		%
Author	Published	OR (95% CI)	Weight
Moller	1985 —	0.65 (.26, 1.62)	21.79
Clausen*	2001	5.60 (3.28, 9.42)	25.18
Svenstrup*	2008	4.50 (1.20, 15.60)	18.32
Haggerty*	2008	1.40 (.60, 2.90)	23.02
Grzesko	2009	5.37 (.64, 44.70)	11.68
Overall (12 =	= 80.2%, <i>P</i> = .000)	2.43 (.93, 6.34)	100.00
NOTE: Weig	ghts are from random-effects analysis		
	.1 .2 .5 1 2 5 10		

Lis et al. *Clin Infect Dis* 2015 Aug 1; 61:418-426.

Persistence of M. genitalium

Persistence in men (18-45 yo) with NGU following treatment (1 week, 3 weeks)¹

Persistence in asymptomatic women (15-25 yrs of age) with bacterial vaginosis²

Follow-up Status	N (%)
Persistent MG (all follow-up results are positive)	42 (20.6
Cleared after baseline (no + test results after baseline)	50 (24.5)
Cleared after 2 months (no + test results after 2 months)	13 (6.4)
Cleared after 4 months (no + test results after 4 months)	11 (5.4)
Cleared after 6 months (no + test results after 6 months)	11 (5.4)
Mixed (both + and – results throughout follow-up)	77 (37.8)

1. Seña, AC, et al. *J Infect Dis.* 2012 Aug 1;206(3):357-65. 2. Seña, AC, et al. *Clin Infect Dis.* 2018;67(1):73-79

Therapies for *M. genitalium*

- Doxycycline for 7 days has poor cure rates.¹
- Azithromycin 1.0 gram in single dose is recommended therapy.²
 - Decline in cure rates from 85% to 67% before and after 2009, respectively.³
 - Azithromycin 1.5g over 5 days not more effective than single dose.⁴

- 1. Manhart LE, et. al. Clin Infect Dis. 2015 Dec 15;61 Suppl 8:S802-17.
- 2. CDC. 2015 STD Treatment Guidelines: Mycoplasma genitalium. http://www.cdc.gov/std/tg2015/emerging.htm. Accessed January 30, 2019
- 3. Lau A, et al. Clin Infect Dis 2015;61(9):1389-9.
- 4. Read TR, et al. *Clin Infect Dis.* 2017 Feb 1;64(3):250-256

Pooled Cure Rates with Azithromycin

Lau A et al. *Clin Infect Dis* 2015 Nov 1; 61(9):1389-99.

	Publication	Conducted
Study	Year	Year
Gambini	2000	1999
Takahashi	2008	2004
Wikstrom	2005	2004
Stamm	2007	2004
Bjornelius	2008	2004
Mena	2009	2004
Bradshaw	2006	2005
Anagrius	2013	2005
Jernberg	2008	2006
Hagiwara	2011	2007
Bradshaw	2008	2007
Walker	2013	2008
Schwebke	2011	2009
Terada	2012	2010
Couldwell	2013	2011
Manhart	2013	2011
Henning	2014	2012
Bissessor	2015	2012
Kissinger	2013	2013
Daley	2014	2013
Gundevia	2015	2013
-V Overall	(I-squared = 80	.8%)
D+L Overall		

Microbial

cure (95% CI)

Efficacy estimates %

Therapies for M. genitalium

- Moxifloxacin 400 mg daily for 7– 14 days is preferred second-line agent.¹
- Duration of moxifloxacin does not significantly affect cure rates.²
- Decline in cure rates from 100% to 89% before and after 2010, respectively.³
- CDC. 2015 STD Treatment Guidelines: *Mycoplasma genitalium*. http://www.cdc.gov/std/tg2015/emerging.htm. Accessed January 30, 2019.
 Manhart LE, et al. *Clin Infect Dis* 2015 Dec 15;61 Suppl 8:S802-17.
 Li Y, et. al. *Int J STD AIDS*. 2017 Oct; 28(11):1106-1114

Increasing Antibiotic Resistance

- Azithromycin -Single-nucleotide polymorphisms in region V of the 23S ribosomal RNA gene of *M. genitalium* can prevent macrolide binding.
- Moxifloxacin Presence of mutations in *gyrA* and *parC* in the quinolone resistancedetermining region of *M. genitalium* correlated with treatment failures.
- Macrolide resistance is now reported in >50% of diagnosed infections in many countries, and multi-drug resistant *M. genitalium* in Australia and Japan.

To effectively target therapy against *M. genitalium,* **accurate and sensitive tests are essential for clinical diagnosis**.

1. **3.** Getman *et al,* J Clin Microbiol 54 (2016) 2278. **4**. Manhart LE, et al. *Clin* Infect Dis 2011;53(Suppl 3):S129–42. **5**. Lau A, et al. *Clin Infect Dis* **2015**; 61:1389–99.

M. genitalium Diagnosis

Microscopy

As the bacterium has no cell wall, Gram stain cannot be used to detect *M. genitalium.*

Culture

The organism is extremely fastidious and only a few laboratories worldwide have successfully cultured *M. genitalium* from patient specimens.

NAATs

NAAT is the recommended method of detection.^{1,2}

1. Frolund, 2016. Urethritis-associated Pathogens in Urine from Men with Nongonococcal Urethritis: A Case-control Study. Acta Dermatol 96, 689 2. CDC. Sexually Transmitted Diseases and Treatment Guidelines: *Mycoplasma genitalium*. http://www.cdc.gov/std/tg2015/emerging.htm. Updated June 4, 2015. Accessed January 30, 2019.

M. genitalium Detection

- Nucleic acid amplification tests (NAATs) have been in use since the early 1990s for research purposes.
- Early polymerase chain reaction (PCR) tests focused on the MPa adhesion gene and the 16S ribosomal RNA gene.^{1,2}
- Transcription-mediated amplification (TMA) assays targets the 23S rRNA.³
- Multiplex tests have been developed for detection of multiple pathogens (e.g. *C. trachomatis*, *Neisseria gonorrhoeae*, and *M. genitalium*).
 - 1. Jensen JS, et. al. J Clin Microbiol 1991; 29:46–50.
 - 2. Jensen JS, et. al. J Clin Microbiol 2003; 41:261–6.
 - 3. Gaydos CA. J Infect Dis 2017; 216(Suppl 2): S406–S411.

M. genitalium TMA Assay

First FDA-approved assay for detection of *M. genitalium* in the US (Hologic, Inc)

Aptima Mycoplasma Genitalium Assay [package insert] AW-17946, San Diego, CA; Hologic, Inc., 2019

Key Questions

- Which patients with specific STI syndromes (e.g. cervicitis, persistent NGU, PID) should undergo testing for *M. genitalium?*
- Should screening programs be developed for *M. genitalium* to avoid complications, especially in women?
- What should be the recommended first-line treatment for *M. genitalium*?
 - Are there novel agents in the US that are promising as future therapies?
- In addition to NAATs for diagnosis, do we also need molecular based assays for prediction of antimicrobial resistance in *M. genitalium*?

Case Study

Courtesy of William Geisler, MD, MPH Professor, Division of Infectious Diseases University of Alabama at Birmingham

Case Description

- The Patient:
- A 21-year-old sexually active white female, gravida 0, para 0, comes to the office complaining of mild vaginal discharge. You take a history and find that she has had three male sexual partners over the past year, and that she uses oral contraceptives and condoms for birth control. Pelvic examination reveals cervicitis.

Decision Point

How would you manage this patient?

(More than one answer may be correct)

Order chlamydia and gonorrhea tests

- Order a trichomoniasis test, if available
- Evaluate for bacterial vaginosis (BV)
- All of the above

Case Continued

 Since the patient has cervicitis, you prescribe presumptive antibiotic therapy prior to confirmation of infection. You also instruct her to abstain from intercourse until the results of her STI tests come back and her recent partner(s) have received empiric treatment.¹

Decision Point

Which antibiotic regimen do you prescribe?

(More than one answer may be correct)

- a) Azithromycin 1 g by mouth
- b) Doxycycline 100 mg by mouth twice daily for 7 days
 - c) Ceftriaxone 250 mg intramuscular injection
- Both a and c
 - Both b and c

Case Continued

- You administer a ceftriaxone 250-mg intramuscular injection and give the patient azithromycin 1 g to take by mouth.^{1,2}
- NAAT returned positive for chlamydia. Despite tolerating antibiotics, the patient returns in 3 weeks with persistent vaginal discharge. The patient was abstinent after treatment and her partner was also treated. A repeat pelvic examination reveals cervicitis.
- 1. CDC. 2015 STD Treatment Guidelines: Gonococcal Infections. 2016. www.cdc.gov/std/tg2015/gonorrhea.htm. Updated July 27, 2016. Accessed March 4, 2019.
- 2. American College of Obstetricians and Gynecologists. Dual Therapy for Gonococcal Infections. Committee Opinion No. 645. Published November 2015. Accessed March 4, 2019.

Decision Point

How do you further manage this patient?

(More than one answer may be correct.)

- Retest for chlamydia
- Retest for gonorrhea
- Test for *M. genitalium*
 - Consider treatment with doxycycline 100 mg twice daily for 7-days
- All of the above

Case Continued

The patient does not improve with doxycycline and the *M. genitalium* test is returned positive, while the chlamydia and gonorrhea tests are negative.

Decision Point

What antibiotic regimen would you choose to resolve the *M. genitalium* infection? (*More than one answer may be correct.*)

- Repeat doxycycline for 7 days at a dose of 100 mg twice daily by mouth
- Repeat azithromycin 1 g by mouth
- Prescribe moxifloxacin 400 mg daily for 7, 10, or 14 days by mouth
 - Prescribe erythromycin base 500 mg QID for 7 days by mouth

Summary

- It is prudent to be suspicious for *M. genitalium* infection in women with cervicitis, particularly if the condition persists despite initial antibiotic treatment for other STIs.
- Azithromycin is the first-line treatment for *M. genitalium* infection, but it is increasingly ineffective due to developing antibiotic resistance.
- Moxifloxacin is the second-line treatment for *M. genitalium* infection, but it has also been associated with treatment failure.

Prevalence of Mycoplasma genitalium in Clinical Specimens

The Use of Nucleic Acid Amplified Test (NAAT)

Kn wledgeLab 2017

March 26-29, 2017 Gaylord Opryland Resort & Convention Center Nashville, Tenn.

- First identified in 1980's
- Cause of nongonococcal urethritis in men (NGU)
- Inhabits the epithelial cells of the urinary tract
- Considered to be an STD in men and women
- Is thought to be more common than gonorrhea

- Fastidious organism
- Takes 6 months to grow in a culture
- Not feasible for diagnosing this STD bacterium
- NAAT test of choice
- Not FDA approved yet

- Started validation studies in October, 2015
- Went live with testing on January 4, 2016
- Test performed on urines, urethral/cervical swabs, vaginal swabs
- Also testing rectal and throat swabs

- Insight to Springfield-Greene Co Health Department
- 3 STD nurses
- Express Clinic
- Went from 100 patients per month to currently over 700 patients per month

M. genitalium results by gender

Age group calculation based on current year and year of birth provided. Age group may not be accurate if only year of birth was provided.

M. genitalium percentages based on reported race of clinic patients

0% 25% Urine 40% Rectum* Throat* Vaginal Cervix 30% 5%

M. genitalium results for sample source data - % Positive

* Rectal and throat samples only collected from MSMs (men who sleep with men).

Co-infection percentages of M. genitalium with Chlamydia trachomatis, Neisseria gonorrhea, or Trichomonas vaginalis

- Case study of NGU patients
- 51 NGU treatments
- 6 positive for Mycoplasma genitalium Only
- 4 positive for Chlamydia trachomatis and Mycoplasma genitalium
- 2 positive for Neisseria gonorrhea and Mycoplasma genitalium

Kn wledge Lab 2017

23.5% positivity rate

- Case study of reoccurring bacterial vaginosis
- 41 cases
- 11 Positive for Mycoplasma genitalium
- 27% positivity rate
- 5 of those cases had no history of other STD's

Why all labs should add Mycoplasma genitalium to their STD Panel

- 21 year old female presented with sore throat for a few days
- Had been tested for strep with a negative result
- Swabbed throat
- Positive for Mycoplasma genitalium

Why all labs should add Mycoplasma genitalium to their STD Panel

- 32 year old black male presented with burning with urination
- Dysuria for 5 years
- Same partner for 8 years
- Never been tested
- Positive for Mycoplasma genitalium

- Conclusion
- Overall positivity rate is 10.75%
- Females slightly higher than men 12.67% vs. 9.18%
- Age range of 18-34
- Mycoplasma genitalium is a good addition to our STD panel

Mycoplasma genitalium Report January - December 2016

Mycoplasma genitalium ⁵ Positives							
Source	Negative	Positive	TOTAL TESTED	% Positive			
Urine	3313	453	3766	12.03%			
Rectum ¹	220	31	251	12.35%			
Throat ¹	263	6	269	2.23%			
Vaginal	48	10	58	17.24%			
Cervix	2	0	2	0%			
TOTALS	3846	500	4346	11.50%			

Mycoplasma genitalium positive - Race and Age ²								
Age	18-24	25-29	30-34	35-39	40+	TOTAL +	TOTAL Samples ³	% +
White	185	100	38	16	16	355	3325	10.68%
Black	43	30	10	8	5	96	604	15.90%
Hispanic	4	3	0	2	0	9	128	7%
Asian	2	1	1	0	0	4	44	9.10%
American Indian or Alaskan	12	2	0	0	0	14	86	16.28%
Multiracial	15	3	1	1	1	21	132	15.91%
Pacific Islander or Hawaiian	0	0	0	0	0	0	14	0%
Unknown	0	0	1	0	0	1	13	7.70%
TOTAL	261	139	51	27	22	500	4346	11.50%
LMAK Kn Wledge Lab						D2017		

Mycoplasma genitalium Report January - December 2016

Mycoplasma genitalium Positive - Gender & Age ²								
					40			
Age	18-24	25-29	30-34	35-39	40+	IOTAL+	TOTAL Samples ³	% +
Male	93	72	35	14	11	225	2357	9.55%
							1.0.1	
Female	168	66	17	13	11	275	1989	13.83%
TOTALS	261	138	52	27	22	500	4346	11.50%
					x 9.7 × *	COLOR AND		

	M. Gen + Co-i	nfection ⁴ rate	
Age	TOTAL Co-infected	TOTAL M.gen +	% co-infected
Male	40	225	17.78%
Female	48	275	17.45%
TOTALS	88	500	17.60%

- Different types of specimen collection and transport media
- Why it is important to collect specimens appropriately

